TREMA: A traffic-aware energy efficient MAC protocol to adapt the LoRaWAN capacity

Laurent Chasserat, Nicola Accettura, Balakrishna Prabhu and Pascal Berthou

LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France

LPWAN Days 2021 - Clermont-Ferrand (July 8th)

Laurent Chasserat (LAAS-CNRS) TREMA: Adapting the LoRaWAN capacity LPWAN Days (July 8th 2021) 1/19

1. Introduction

Introduction

Laurent Chasserat (LAAS-CNRS) TREMA: Adapting the LoRaWAN capacity LPWAN Days (July 8th 2021) 2/19

A D N A B N A B N A B N

э

Background on LoRa

- LoRa is an LPWAN technology (Low Power + Wide Area)
- Low Power : High energy constraints on nodes → Pure ALOHA access [1]
- Wide Area : Many nodes in the network
 - \rightarrow High collision rate
 - \rightarrow Scalability issues
 - \rightarrow Need for a synchronized approach

Motivation for TREMA

In a previous contribution [2] we introduced Class S, a framework relying on the Class B synchronization beacons to enable a time-synchronized slotted access over LoRaWAN. We showed that:

- For low traffic loads \rightarrow Pure ALOHA is more energy-efficient.
- For high traffic loads \rightarrow A slotted access is more energy-efficient.

Objective of this contribution

We present the TRaffic-aware Energy effcient MAC (TREMA) protocol to adapt the access scheme to the traffic conditions.

く 目 ト く ヨ ト く ヨ ト

- 1. Introduction
- 1.1 Background on LoRa and motivation
- 1.2 Summary
- 2. Design of TREMA
- 2.1 Overview
- 2.2 Prior deployment fingerprinting
- 2.3 Execution flowchart
- 3. Testing of TREMA
- 4. Conclusion
- 5. References

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

2. Design of TREMA

Design of TREMA

Laurent Chasserat (LAAS-CNRS) TREMA: Adapting the LoRaWAN capacity LPWAN Days (July 8th 2021) 6/19

A D N A B N A B N A B N

1. Overview

Overview

TREMA defines:

- A time-synchronized scheduled access built over Class S, to be used when the traffic load is high.
- The definition of the deployment fingerprint, needed to wisely select the most efficient access scheme and estimate the traffic load.
- The network probing and access scheme selection mechanisms.
- A signaling protocol to control the MAC access scheme.

What is the deployment fingerprint and why is it needed?

Fingerprint definition

The **fingerprint** of a deployment is the characterization of the Throughput, Energy efficiency and Gateway Idle Listening Time (GILT) as a function of the traffic generation rate in the given deployment, for the considered synchronous and asynchronous access schemes.

- The **Throughput** fingerprint is needed to determine the deployment's capabilities under the considered access schemes and to compute the energy efficiency.
- The **energy efficiency** is used to determine which access scheme should be chosen for any traffic load.
- The **Gateway Idle Listening Time (GILT)** is probed by the gateway periodically. Its fingerprint is leveraged by the server to provide an estimation of the generated traffic. This is possible because the GILT is a strictly decreasing function of the network traffic load.

Throughput fingerprint¹

- The synchronized access allows to double the achievable throughput.
- A significant increase is noticed when a significant portion of the devices in the network are synchronized.

Figure: Throughput

¹Exact deployment parameters used to obtain this fingerprint are listed on slide 21 o con-Laurent Chasserat (LAAS-CNRS) TREMA: Adapting the LoRaWAN capacity LPWAN Days (July 8th 2021) 9/19

Energy efficiency fingerprint²

²Exact deployment parameters used to obtain these fingerprints are listed on slide 21 Laurent Chasserat (LAAS-CNRS) TREMA: Adapting the LoRaWAN capacity LPWAN Days (July 8th 2021) 10/19

Gateway Idle Listening Time (GILT) fingerprint³

Figure: GILT fingerprint

³Exact deployment parameters used to obtain this fingerprint are listed on slide 21.0 c. Laurent Chasserat (LAAS-CNRS) TREMA: Adapting the LoRaWAN capacity LPWAN Days (July 8th 2021) 11/19

Execution flowchart

Figure: TREMA's execution flowchart

Laurent Chasserat (LAAS-CNRS) TREMA: Adapting the LoRaWAN capacity LPWAN Days (July 8th 2021) 12/19

<ロト < 四ト < 三ト < 三ト

э

3. Testing of TREMA

Testing of TREMA

Laurent Chasserat (LAAS-CNRS) TREMA: Adapting the LoRaWAN capacity LPWAN Days (July 8th 2021) 13/19

A D N A B N A B N A B N

э

Example scenario

Laurent Chasserat (LAAS-CNRS) TREMA: Adapting the LoRaWAN capacity LPWAN Days (July 8th 2021) 14/19

4. Conclusion

Conclusion

Laurent Chasserat (LAAS-CNRS) TREMA: Adapting the LoRaWAN capacity LPWAN Days (July 8th 2021) 15/19

< □ > < □ > < □ > < □ > < □ >

Conclusion

Laurent Chasserat (LAAS-CNRS) TREMA: Adapting the LoRaWAN capacity LPWAN Days (July 8th 2021) 16/19

イロト イヨト イヨト イヨト

5. References

References

Laurent Chasserat (LAAS-CNRS) TREMA: Adapting the LoRaWAN capacity LPWAN Days (July 8th 2021) 17/19

ヘロト ヘロト ヘヨト ヘヨト

References I

- N. Abramson, "THE ALOHA SYSTEM: another alternative for computer communications," in *Proc. of AFIPS '70 (Fall)*, ser. AFIPS '70 (Fall). Houston, Texas: ACM, Nov. 1970, pp. 281–285.
- [2] L. Chasserat, N. Accettura, and P. Berthou, "Short: Achieving energy efficiency in dense LoRaWANs through TDMA," in *IEEE International Symposium On a World of Wireless, Mobile and Multimedia Networks* (WoWMoM), Cork, Ireland, Aug. 2020. [Online]. Available: https://hal.laas.fr/hal-02551973
- [3] Semtech Corporation, "SX1276/77/78/79 datasheet," Jan. 2019.

Thank you very much!

A D N A B N A B N A B N

Bonus: A time-synchronized scheduled access over Class S

Laurent Chasserat (LAAS-CNRS) TREMA: Adapting the LoRaWAN capacity LPWAN Days (July 8th 2021) 20/19

Bonus: Simulated deployment parameters

Parameter	Value
Number of devices	1000
Simulation duration	24 hours
Spreading Factor	7
Frame time-on-air	626.94 ms
Beacon time-on-air	173.06 ms
Timeslot size	660 ms
Data rate	DR5 (SF7 with bandwidth 125 kHz)
Frame generation rate	Varies from \sim 0.5 to \sim 19 pkts. $/$ h.
Channels	868.1, 868.3 and 868.5 MHz
Uplink Duty Cycle	1%
Device buffer size	1
Downlink data messages	Disabled
Acks and retransmissions	Disabled
Sensor voltage	3.3 V
Sensor current intensity	20 mA TX, 10.8 mA RX [3]
Laurent Chasserat (LAAS-CNRS) TREMA: Adapting the LoRaWAN capacity LPWAN Days (July 8th 2021) 21/1	

21/19 TREMA: Adapting the LoRaWAN capacity LPWAN Days (July 8th 2021)

Bonus: Signaling protocol

Figure: General-case signaling (used here Figure: Signaling to switch from Class S to Switch from Class A to Class S) to Class A

Bonus: Performance gain

Figure: Performance gain when using TREMA ($n_{skip} = 3$)

Laurent Chasserat (LAAS-CNRS) TREMA: Adapting the LoRaWAN capacity LPWAN Days (July 8th 2021) 23/19

(日) (同) (日) (日)

э