Orange Innovation

orand

Journées LPWAN 2021 (8-9 juillet, Clermont-Ferrand)

IP header compression for LPWANs

Dominique Barthel

Orange Expert Future networks

Motivation

Why IP over LPWANs?

Internet Protocols (IP) have taken over the world of networking

Some Low-Power Wide Area Networks (LPWANs) have remained non-IP so far

- IP deemed too heavyweight, not needed
- Sigfox: 12 bytes uplink, 8 bytes downlink; LoRaWAN: US 11 bytes, EU 52 bytes min payload

Cost of custom LPWAN protocols, security models, APIs

- Technology-specific training and tools
- Protocol translation gateways

Long track record of IP Header compression, fragmentation

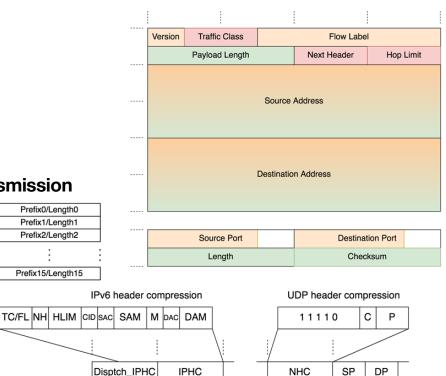
- Van Jacobson TCP/IP header compression, RFC1144 (1990)
- RoHC (Robust Header Compression) (2000-2010), see RFC 5795 for overview
 - Used in VoLTE: RTP/UDP/IP, AMR12.2 vocoder 28.8kbps → ~15 kbps
- **6LoWPAN (2005 2014), 6lo (2014), dedicated to IEEE 802.15.4, frames usually ~100 bytes**

THREAD

Alliance

Why not just use 6LoWPAN for LPWANs?

RFC 4944 Header Compression


- **Only compresses link-local prefixes**
- Only compresses IIDs derived out of L2 address
- Best case is 7 bytes for UDP/IPv6 headers

RFC 4944 Fragmentation

- **5 bytes Fragmentation Header**
- Fragment Payload in 8 bytes increments
- No individual Fragment acknowledgement and retransmission

RFC 6282 Header Compression

- 4-6 bytes for UDP/IPv6 headers (routable addresses)
- Still byte-aligned, custom-tailored per protocol
- \rightarrow Can do better with new standard

NHC

SP

DP

IPHC

SCHC fundamental principles

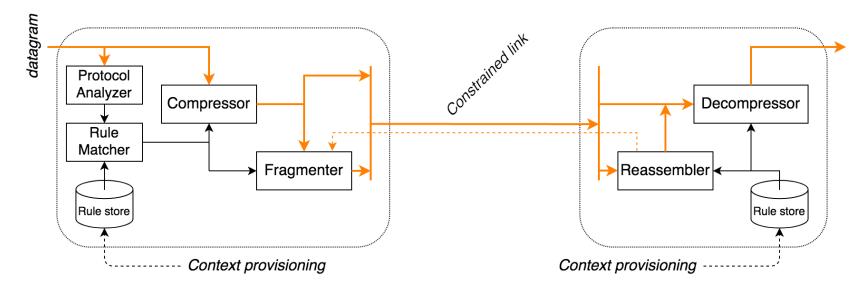
Assumes

- rare configuration/application changes
- very constrained transmission (energy, time on air)
- constrained memory, not-so-constrained computation
- point-to-point link, no out-of-order delivery

Supports

- unidirectional/asymmetric or bidirectional links
- constant or variable MTU

Provides


- flexible mechanism, not dedicated to any upper/lower layer
- extreme header compression
- efficient fragmentation
- little control dialog

SCHC generic architecture

SCHC: "Static Context Header Compression and fragmentation"

- Context is static for the duration of the communication
 - Contains Compression Rules, Fragmentation Rules
- Compression is conducted according to Rule with a pattern matching the datagram
- Fragmentation is applied if needed

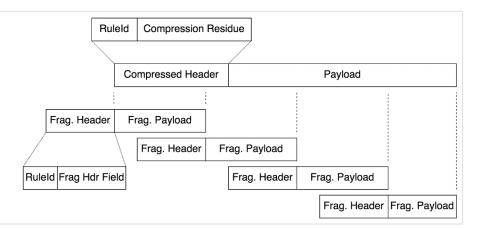
7

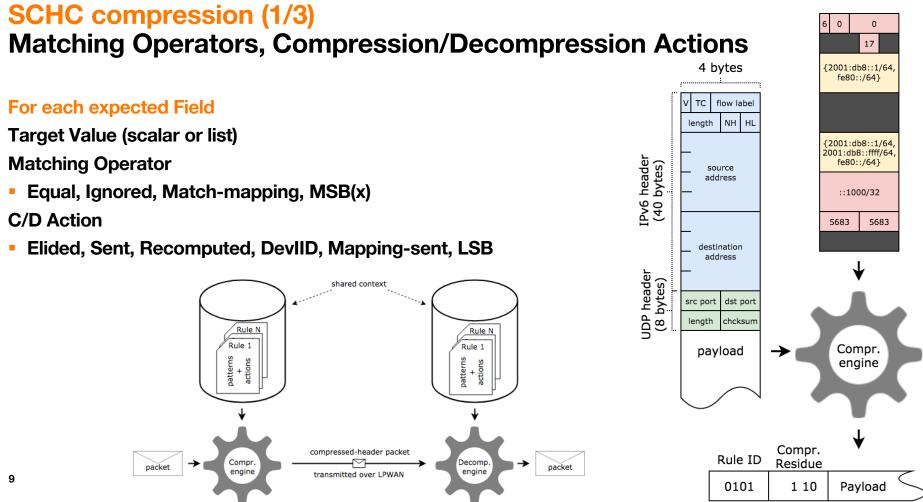
SCHC generic framework

RuleIDs

- No set RuleID size per RFC 8724
- RuleID can be of variable size (entropic encoding)
- Compression and Fragmentation Rules share the same name space
- Compression RuleIDs apply to a single data direction
 - Same RuleID can be re-used for a different Rule in the reverse direction

Compression


Eragmentation


- Fragmentation RulesIDs apply to both directions, if link is bidirectional
 - Match ACKs with data

Encapsulation

Compressed Packet is fragmented, if needed

Rule 5

SCHC compression (2/3) More complex protocols

Not just bit-pattern matching on incoming packet

Protocol analyzer needed

- Itemizes and labels each Header Field
- Some Fields may be of variable length
 - CoAP uri-path, uri-query, ...
- Some Fields may occur multiple times
 - CoAP uri-path, uri-query, ...

```
Frame 69: 76 bytes on wire (608 bits), 76 bytes captured (608 bits) on interfa
Linux cooked capture
Internet Protocol Version 4, Src: 161.106.2.62, Dst: 92.180.153.132
> User Datagram Protocol, Src Port: 5683, Dst Port: 56830
Constrained Application Protocol, Confirmable, PUT, MID:26424
    01.. .... = Version: 1
    ..00 ... = Type: Confirmable (0)
    .... 1000 = Token Length: 8
    Code: PUT (3)
    Message ID: 26424
    Token: 2c6a4b9610cba57d
  • Opt Name: #1: Uri-Path: 3311
      Opt Desc: Type 11, Critical, Unsafe
      1011 .... = Opt Delta: 11
      .... 0100 = Opt Length: 4
      Uri-Path: 3311
  - Opt Name: #2: Uri-Path: 0
      Opt Desc: Type 11, Critical, Unsafe
      0000 .... = Opt Delta: 0
      .... 0001 = Opt Length: 1
      Uri-Path: 0
  - Opt Name: #3: Uri-Path: 5850
      Opt Desc: Type 11, Critical, Unsafe
      0000 .... = Opt Delta: 0
      .... 0100 = Opt Length: 4
      Uri-Path: 5850
  - Opt Name: #4: Content-Format: application/vnd.oma.lwm2m+tlv
      Opt Desc: Type 12, Elective, Safe
      0001 .... = Opt Delta: 1
      .... 0010 = Opt Length: 2
      Content-type: application/vnd.oma.lwm2m+tlv
    End of options marker: 255
    [Uri-Path: /3311/0/5850]
    [Response In: 71]
  Pavload: Pavload Content-Format: application/vnd.oma.lwm2m+tlv. Length: 4
Lightweight M2M TLV (1 element)
      45 00 00 3c 76 e5 40 00 40 11 29 eb a1 6a 02 3e
                                                         0010
0020 5c b4 99 84 16 33 dd fe 00 28 9a 1a 48 03 67 38
                                                         \····3·· ·(·
                                                                      H · q8
0030
      2c 6a 4b 96 10 cb a5 7d  b4 33 33 31 31 01 30 04
                                                          iK····} ·3311·0
0040
      35 38 35 30 12 2d 16 ff e1 16 da 01
 Aide
                                                                       Sermer
```

Wireshark · Paquet 69 · 2020 10 15-23h36.pcapng

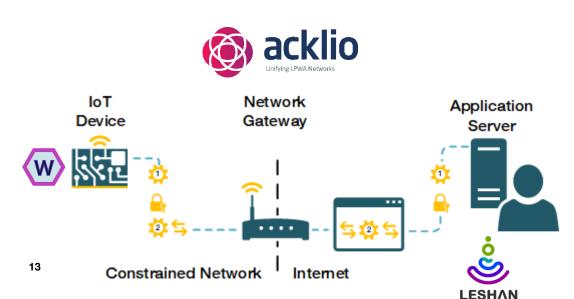
SCHC compression (3/3) More complex headers

Rule includes

- Field expected Position
- Field expected Length
 - may be Variable:
 - Compression Residue Length needs to be transmitted
- Direction Indicator
 - Allows sharing customized Rule between uplink/downlink
 - E.g., IPv6 Source/Destination prefixes swapped

Formal Rules description in progress

Rule N									
ſ					Rule 2				
•	Rule 1								
Fieldl	D1	FLength	FPos	FDir	TargetValue	Match.Op.	C/D Action		
Fieldl	D2	FLength	FPos	FDir	TargetValue	Match.Op.	C/D Action		
FieldI	D3	FLength	FPos	FDir	TargetValue	Match.Op.	C/D Action		
FieldI	DN	FLength	FPos	FDir	TargetValue	Match.Op.	C/D Action		J


Using SCHC

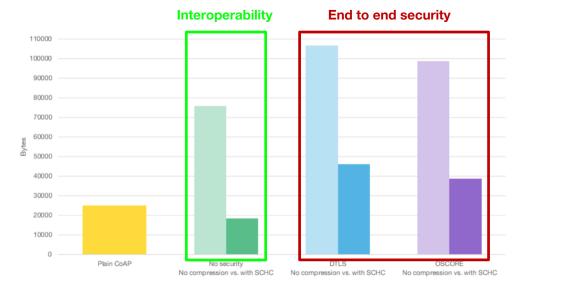
LwM2M/OSCORE/CoAP/UDP/IPv6 compression

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

Smart Tracking application using LwM2M

- mangOH Red Wakaama client, Leshan server
- DTLS, OSCORE and SCHC proxies developed by Acklio
- double SCHC compression (before/after encryption)

mangOH® Red – Orange™ LTE-M Starter Kit


Build low-power LTE-M IoT applications that can run for up to 10 years on a battery with the newest and smallest mangOH platform and Orange LTE-M network in Europe, and send your IoT sensor data to Orange Live Objects cloud.

Longitude		Observe F Read 5.8600687980651855	
Altitude		Observe 🕨 🔳 Read	
Radius		Observe 🕨 🔳 Read	
Velocity	/8/0/4	Observe 🕨 🔳 Read	
Timestamp		Observe F Read 2021-01-23T16:26:31+01:0	0
Speed	767016	Observe 🕨 🔳 Read	
Temperature	/3303		
		Create New Instance	
Instance 0		Observe 🕨 🔳 Read Delete	
Min Measured Value		Observe 🕨 🔳 Read	
Max Measured Value		Observe 🕨 🔳 Read	
Min Range Value		Observe 🕨 🔳 Read	
Max Range Value		Observe 🕨 📕 Read	
Reset Min and Max Measured Values		Exec 🗢	
Sensor Value		Observe Read 31.579999923706055	
Sensor Units		Observe 🕨 📕 Read	
Light Control	/3311		
		Create New Instance	
Instance 0		Observe 🕨 🔳 Read Write Delete	
Sensor Units		Observe 🕨 🔳 Read	
Colour		Observe 🕨 🔳 Read Write	
Application Type		Observe 🕨 🔳 Read Write	
Cumulative active power		Observe 🕨 🔳 Read	
Power factor		Observe 🕨 🔳 Read	
On/Off		Observe > Read W/10-1311/0/5650	
Dimmer		Observe > E Read W	
On time		Observe	

LwM2M/OSCORE/CoAP/UDP/IPv6 compression demo

Smart Tracking application using LwM2M

- demo shown at the Orange 2021 "Salon de la Recherche"
- paper submitted to Globecom2021 IoTSN

DLMS over LoRaWAN

Stitching standards together rather than defining a new one

DLMS/COSEM

- an application protocol and data model
- widely used in electric/gas smart metering
- 400-500 bytes payloads typical

Wanted to allow LoRaWAN to carry DLMS

Write new adaptation spec?

Already had DLMS/UDP/IP profile

UDP/IPv6/LoRaWAN stack is the straightforward solution

To know more

- Official <u>announcement</u> (Oct 6th 2020)
- DLMS over LoRaWAN introduction

What's next

Conclusions and Perspectives

Achieved

- base technology established, standardized
- adoption started

Next steps

• Open source implementation https://github.com/openschc

- More profiles for upper layers
- More profiles for underlying layers
- Context formal definition
- Context provisioning protocol
- Automated rule generation
- Performance evaluation

			RFC	98	,24		1-104	13	h-oam-schc
	CoAF	>	draft-barther						
	UDP		ICN	ICMPv6			ЭР		
	IPv6		IF	IPv6		IP	v6	<	2FC8724
	He	Head ar Compression/							
		F	ragm Reas						
-	LoRaWAN		sigfox		NB-IoT		:		
	RF	Ċ	drah 011	-ie	dra ^{tf-} low	An-s	ichc.	va, °°l	^{n-schc-over-nbiot}

Orange Innovation

Thanks

References

RFC 8376 « Low-Power Wide Area Network (LPWAN) Overview », May 2018, https://www.rfc-editor.org/info/rfc8376

RFC 8724 « SCHC: Generic Framework for Static Context Header Compression and Fragmentation », Apr 2020, <u>https://www.rfc-editor.org/info/rfc8724</u>

RFC 8824 « Static Context Header Compression (SCHC) for the Constrained Application Protocol (CoAP) », June 2021, <u>https://www.rfc-editor.org/info/rfc8824</u>

RFC 9011 « Static Context Header Compression and Fragmentation (SCHC) over LoRaWAN », Apr 2021, <u>https://www.rfc-editor.org/info/rfc9011</u>

C. Gomez, A. Minaburo, L. Toutain, D. Barthel and J. C. Zuniga, "IPv6 over LPWANs: Connecting Low Power Wide Area Networks to the Internet (of Things)," in IEEE Wireless Communications, vol. 27, no. 1, pp. 206-213, February 2020, doi: 10.1109/MWC.001.1900215. https://ieeexplore.ieee.org/document/8994201

S. Aguilar *et al.*, "Performance Analysis and Optimal Tuning of IETF LPWAN SCHC ACK-on-Error Mode," in *IEEE Sensors Journal*, doi: 10.1109/JSEN.2020.3007855. <u>https://ieeexplore.ieee.org/document/9138413</u>

I. Suciu, X. Vilajosana and F. Adelantado, "An analysis of packet fragmentation impact in LPWAN," 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, 2018, pp. 1-6, doi: 10.1109/WCNC.2018.8377440. <u>https://ieeexplore.ieee.org/document/8377440</u>

Open Source project http://openschc.net